On the optimality of the standard genetic code: the role of stop codons
نویسندگان
چکیده
The genetic code markup is the assignment of stop codons. The standard genetic code markup ensures the maximum possible stability of genetic information with respect to two fault classes: frameshift and nonsense mutations. There are only 528 (about 1,3% of total number) optimal markups in the set of markups having 3 stop codons. Among the sets of markups with 1,2…8 stop codons, the standard case having 3 stop codons has maximum absolute number of optimal markups.
منابع مشابه
Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostoma magnum
mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not m...
متن کاملGenetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination
The prevailing view of the nuclear genetic code is that it is largely frozen and unambiguous. Flexibility in the nuclear genetic code has been demonstrated in ciliates that reassign standard stop codons to amino acids, resulting in seven variant genetic codes, including three previously undescribed ones reported here. Surprisingly, in two of these species, we find efficient translation of all 6...
متن کاملResponse to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers Regarding Our Article “Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria”
Most deviations from the universal genetic code exist in the mitochondrial translation system. In human mitochondria, two arginine codons, AGA and AGG, have no cognate tRNAs; mtDNA-encoded cytochrome c oxidase subunit I (MTCO1) and NADH dehydrogenase 6 (MTND6) carry AGA and AGG codons at the end of their mRNAs, respectively. We previously demonstrated in vitro the possible engagement of ICT1 in...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملNon-Standard Genetic Codes Define New Concepts for Protein Engineering
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondri...
متن کامل